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B8.0.0 TORSION

Sections under B8 deal with the torsional analysis of straight
structural elements that have longitudinal dimensions much greater than
their cross-sectional dimensions. Such an element is called a bar,

The first division, Section B8.1, provides a common ground
for the ahalytical divisions which follow; the solid cross section, treated
in Section BB8.2; the thin-walled closed cross section treated in Section
B#8. 3; and the thin-walled open cross section, treated in Section BBS. 4,

In each of the divisions, the cross section under consideration
will be defined, described, and pictorially represented. Particular con-
ditions which are pertinent to the approach, such as restraints, will be

stated; the basic theory, and limitations, if any, will be given.
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B8.1.0 GENERAL
Section B8.1 presents the notation and sign convention for local co-
ordinate systems, applied twisting morﬁents, internal resisting moments,
stresses, deformations, and derivations of angle of twist, These conven-
tions will be followed in Sections B8.2, B8. 3, and BS8. 4,

Restrained torsion and unrestrained torsion are considered for
the thin-walled open and thin-walled closed cross sections, and unrestrained
torsion is considered for the solid cross section, Restrained torsion requires
that no relative longitudinal displacement shall occur between two similar
points on any two similar cross sections. Warping is restrained.

Restrained torsion of solid cross sections is not considefed because
it is a localized stress condition and atte;nuates rapidly. The stresses and
deformations determined by the methods contained in this section can be
superimposed upon stresses and deformations caused by other types of load-
ing if the dcforrﬁations are small and the maximum combined strcss does

not exceed the yield stress of the material.
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B8.1.1 NOTATION
All general terms used in this section are defined herein. Special

terms are defined in the text as they occur.
a Width of rectangular section, in.

A ‘ Enclosed area of mean periphery of thin-walled closed
section, in. 2

b Length of element, width of flange, in.

! Width of flange minus thickness of web, in.

C Length of wall centerline {circumference), in.

d Total section depth, in.

D Diameter of circular bar, in,

E Young's modulus, lb/in. ?

G Shear modulus of elasticity, lb/in.?

h Distance between flange centerlines, in.

)| Moment of inertia, in,*

J Polar moment of inertia, in.*

K Torsional constant, in, 4

L Length of bar, in.

Lx Arbitrary distance along x-axis {rom origin, in.

m, Applied uniform tvgis?ing moment or maximum vuluc of
varying applied twisting moment, in. -ib/in.

Mi Internal twisting moment, in.-lb.

M ¢ Applied concentrated twisting moment, in. ~lb.

M(x} Internal twisting moment at point x along bar, written

as function of x

p Pressure, lb/in.?
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Arbitrary point on cross section
Shear flow, lb/in.
Radius of circular cross section, in,

Radius of circular fillet, in.

Distance measured along thin-walled section from. origin,
in.

Torsional modulus, in.3

Warping statical moment, in, ¢
Thickness of element, in.

Thickness of web, in.

Tensile force per unit length, 1b/in. 2
Displacement in the x direction, in. |
Displacement in the y direction, in.
Displacement in the z direction, in.
Normalized warping function, in.?
Volume, in.3

Defined in Section B8.4.1-1IV
Defined in Section B8. 4. 1-IV
Warping constant, in.®

Shear strain

Unit twist, rad/in. (8 = d¢/ dx = ¢")
Poisson's ratio

Radial distance from the centroid of the cross section to
arbitrary point P, in.

Radial distance to tangent line of arbitrary point P from
shear center, in. ‘
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o Longitudinal normal stress, lb/in.?
T Total shear stress, lb/in.?2
T, Torsional shear stress, 1b/in.?2
T Longitudinal shear stress, lb/in. 2
Tw Warping shear stress, lb/in, 2
¢ Angle of twist, rad (¢ = fo 6dx)
¢',¢", ' First, second, and third(:ierivatives of angle of twist
with respect to x, respectively
® Saint-Venant siress function
Subscripts:
i inside
| longitudinal
n normal
o outside
s point s
t forsional or transverse
w warping

X longitudinal direction
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B8.1.2 SIGN CONVENTION

The local coordinate system for a bar subjected to an applied twisting
moment and the sign conventions for applied twisting moments, internal
resisting moments, stresses, displacements, and derivatives of displacements

are defined so that there is continuity throughout the equations presented in

this section.
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B8.1.2 SIGN CONVENTION

I. LOCAL COORDINATE SYSTEM

The local coordinate system is applied to either end of a bar unless
specific limitations are stated. The x axis is placed along the lcngth of the
bar. The y and z axes are the axes of maximum inertia when the cross
section is unsymmetrical, as may be seen in the solid cross section shows in
Figure B8.1.2-1. The coordinate system and sign convention shown ajgly

to thin-walied open and thin-walled clused cross sections also.
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A. Local Coordinate Syétem and
Positive Applied Twisting Moments

\ SEGMENT OF BAR

L SHOWN ABOVE

B. Positive Internal Resisting
Moment and Shear Stresses

ég

C. Positive Angle of Twist

Figure B8.1.2-1. Local Coordinate System
and Positive Sign Convention
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B8.1.2 SIGN CONVENTION
O, APPLIED TWISTING MOMENTS

The applied twisting moments (m_ or Mt) are twisting. moments about

t
the x axis. The applied twisting moments are positive if they are clockwise
when viewed from the origin or are in the positive x direction when represcnted

vectorially. (See Fig. B8.1.2-1A.)
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B8.1.2 SIGN CONVENTION
III. INTERNAL RESISTING MOMENTS

The internal resisting moments (Mi) are about the x axis and have the
same sign convention as the applied twisting moment when they are evaluated
on the y-z plane of a bar segment that is farthest from the origin. (See Fig.
B8.1.2-1B.)
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B8.1.2 SIGN CONVENTION
Iv, STRESSES

Tensile normal stresses (crx) are positive, and compressive normal
stresses are negative. Shear stresses (7) are positive when they arc

equivalent to positive internal resisting moments. (See Fig. B%.1.2-1B.)
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B8.1.2 SIGN CONVENTION
V. DEFORMATIONS

An applied twisting moment induces a rotation or angle of twist (¢)
about the x axis. The rotation is positive if it is clockwise when viewed from
the origin. (See Fig. B8.1.2-1C.) An applied twisting moment also induces
a longitudinal displacement (u) in the x direction for unrestrained torsion.
(See Fig. B8.2.2-2B.) The longitudinal displacemfznt is positive when in the

direction of the positive x axis.



Section B8. i
28 June 1968
Page 12

B8.1.2 SIGN CONVENTION
VI. DERIVATIVES OF ANGLE OF TWIST
The first (¢'), second (¢'"), and third (¢''") derivatives of the

angle of twist with respect to the positive x coordinate are positive, positive,
and negative, respectively, when the rotation is positive and a concentrated

applied twisting moment (Mt) is applied at the ends of the bar.
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B8.2.0 TORSION OF SOLID SECTIONS

The torsional analysis of solid sections is restricted to unrestrained
torsion and does not consider warping deformations.
B8.2.1 General
I Basic Theory

The torsional analysis of solid sections requires that stresses and de-
formations be determined, The torsional shear stress (r t) is determined at
any point (P) on a cross section at an arbitrary distance (Lx) from the origin.
The resulting angle of twist (¢) is determined between an arbitrary cross
section and the origin. These shear stresses and the resulting angles of twist
can be determined when the material properties of the bar, geometry of the
bar, and the applied twisting moment are known.

Two unique coefficients characterize the geometry of each cross section,
the torsional constant (K) and the torsional section modulus (St) . These co-
efficients are functions of the dimensions of the cross section. These constants
are used for calculating deformations and stresses, respectively. For a circular
section, the torsional constant reduces to the polar moment of inertia (J), and
the torsional section modulus reduces to J/p; but for all other cross sections
they are more complex functions.

The torsional shear stress distribution on any cross section of a circular
bar will vary linearly along any radial line emanating from the geometric centroid,
and will have the same distribution on all radial lines ( Fig. B8.2.1-1A). The
longitudinal shear stress (rx) , Which is equal to the torsional shear stress (‘rt) s
produces no warping of the cross section when the stress distribution is the same
on adjacent radial lines (Figs. B8.2.1-1B and B8.2.1-1C), For noncircular

sections, the torsional shear stress distribution is nonlinear (except
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Typical T,
/ dlfribution

A. Circular Bar Shear Stress Distribution

Element (A)

B. Differential Element Location

‘_,-—Eltmtlﬂ (‘)

2 A —
x E -—
Qt =T
—

C. Differential Element

FIGURE BS. 2, 1-1 SHEAR STRESS DISTRIBUTION
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along lines of symmetry where the cross section contour is normal to the radial
line) and will be different on adjacent radial lines ( Fig. BS. 2.2-2A). When the
torsional and longitudinal shear stress is different on adjacent radial lines,
warping of the cross section will occur ( Fig. BS8. 2.2-2B).

When the warping deformation induced by longitudinal shear stresses is
restrained, normal stresses (o) are induced to maintain equilibrium. These
normal stresses are neglected in the torsional analysis of solid sections since
they are small, attenuate rapidly, and have little effect on the angle of twist.

Restraints to the warping deformation occur at fixed ends and at points
where there is an abrupt change in the applied twisting moment.

I Limitations

The torsional analysis of solid cross sections is subject to the following
limitations.

A. The material is homogeneous and isotropic |

B. The shear stress does not exceed the shearing proportional

limit and is proportional to the shear strain (elastic analysis).

C. The stresses calculated at points of constraint and at abrupt

changes of applied twisting moment are not exact.

D. The applied twisting moment cannot be an impact load.

E. The bar cannot have an abrupt change in cross section.*

III Membrane Analogy

The torsional analysis of solid bars with irregularly shaped cross
sections is usually complex, and for some cases unsolvable. The membrane
analogy can be used to visualize the solution for these cross sections.

The basic differential equation for a torsional analysis, written in

terms of the St. Venant's stress function, is:

Stress concentration factors must be used at abrupt changes in the cross

section.
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This equation is similar to the basic differential equation used for the

analysis of a deflected membrane, which is:

The following analogies exist between the solutions of these two analyses
when the membrane has the same boundaries as the cross section of a twisted
bar.

A. The volume under the deflected membrane for any pressure (p)

is equal to one-half the applied twisting moment (Mt) , when
2G9 = p/T numerically.

B. The tangent to a contour line of deflected membrane at any point
is in the same direction as the maximum torsional shear stress
at the same point on the cross section.

C. The slope at any point in the deflected membrane normal to the
contour at that point is proportional to the magnitude of the
torsional shear stress at that point on the cross section,

IV Basic Torsion Equations for Solid Sections

A, Torsional Shear Stress

The basic equation for determining the torsional shear stress at an
arbitrary point (P) on an arbitrary cross section is:
M(x)

t St
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where M(x) is evaluated at x = Lx for the arbitrary cross section where the
torsional shear stress is to be determined.
If a constant torque is applied to the end of the bar, the equation reduces

to: M
‘r =

—t
t 8

St will vary along the length of the bar for a varying cross section and,

in this case, the equation is:

For the case of varying moment and varying cross section, both M(x) and
St(x) must be evaluated at the cross section where the torsional shear stress
is to be determined.
In the equations for torsional shear stress determinations in sections
BS8. 2. 2-HI through B8, 2, 2-VIII, M(x) is equal to Mt and the stress is determined
at the point of maximum torsional shear stress. The resulting equations deter-

mine maximum shear stress only.

B. Angle of Twist

The basic equation for determining the angle of twist between the origin
and any cross section located at a distance L from the origin is:

1 L

X
¢=GKf0 M(x) dx.

When M(x) is a constant torsional moment applied at the end of the bar,

the equation reduces to:
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i Lx MtL
o= g tmas g

and the total twist of the bar is:

M,L
¢ (max) = <K

When the cross section varies along the length of the bar, the torsional

constant becomes a function of x and must be included within the integral as

follows: L
S § x M(x)
¢= 35 7 X &

0

The moment-area technique (numerical integration) is very useful in
calculating angle of twist between any two sections when a M(x)/GK(x) -

Diagram is uged. See Section BS8. 2,3, example problem 3.
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B8.2.2 TORSIONAL SHEAR STRESS AND ANGLE OF TWIST FOR SOLID
SECTIONS

The equations presented in this section for torsional shear stress are
for points of maximum torsional shear stress. For some cross sections,
torsional shear stress equations are presented for more than one location.

The equations presented for angle of twist are for the total angle of
twist developed over the full length of the bar,

The applied load in all cases is a concentrated twisting moment ( Mt)
applied at the end of the bar.

I Circular Section |

The maximum torsional shear stress occurs at the outside surface of

the circular cross section ( Fig. B8, 2.1-1A) and is determined by

M
7 ,(max) = —t
t S
t
where
g - & . mrtf1)_  ar
t  p 2 r 2

Since the torsional shear stress varies linearly from the centroid of
the section, the stress at any point (P) on the cross section is determined by
M. p

J

Tt(P) =

The total angle of twist is determined by

M L

¢ (max) = GK
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where

7 rt

k=15

The angle of twist between the origin and an arbitrary cross section

located at a distance Lx from the origin is determined by

t x
GK

II Hollow Circular Section

The torsional shear stress and angle of twist for a thick-walled hollow
cylinder can be determined from the equations in Section B8, 2. 2, -1 when the
torsional constant and the torsional section modulus are determined by the

following equations.

- I
K=1
_ T
5= 2

FIGURE BS8.2.2-1 HOLLOW CIRCULAR CROSS SECTION
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IIT Rectangular Section

The maximum torsional shear stress occurs at point A (Fig. BS8.2.2-2A)

and is determined by the following equation.
T, (max) = Mt/st
where
s, = abd® .
Some typical values of @ are shown in Table BS8. 2.2-1.

The equation for a in terms of (b/d) is

i
18
50 (b/d)]

o =

The torsional shear stress at point (B) is determined by

‘rt(B) = 'rt(max)(%) .

The total angle of twist is determined by

ML

¢ (max) = ~og~

where
K= gbd .

Some typical values of § are shown in Table B8, 2, 2-1.



Section BS. 2
31 December 1967
Page 10

A, Stress Distribution on Rectangular Cross Section

B. Warping Deformation of a Rectangular Cross Section

FIGURE BS.2.2-2 RECTANGULAR CROSS SECTION
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The equation for 8 in terms of (b/d) is

_ _0.21 _ 0.0833
B =10.333 (b/d) 1.0 W) .

TABLE B8.2.2-1

b/d 1.0 1.5 2.0 2.5 3.0 4.0 6.0 |10.0 |100

a 0,208 | 0.238) 0,256 | 0.269 | 0.278 | 0.290 | 0.303 | 0.314| 0.331

0.333

B 0.141 | 0.195] 0.229 | 0.249 | 0.263| 0.281 | 0.298 | 0.312} 0,331

0.333

The stress distributions on different radial lines are shown in Figure
B8.2.2-2A, and the resulting warping deformation at an arbitrary cross section
located at distance Lx from the origin is shown in Figure B8, 2.2-2B,

IV Elliptical Section

The maximum torsional shear stress occurs at point A ( Fig. B8. 2. 2-3)

and is determined by
Tt( max) = Mt/st

where
_ _nbd
St i6 *

The torsional shear stress at point B is determined by

- b
-rt(B) = 'rt(max) (d)
The total angle of twist is determined by the following equation:

MtL
¢lmax) = g~
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FIGURE BS. 2.2-3 ELLIPTICAL CROSS SECTION

FIGURE B8, 2.2-4 EQUILATERAL TRIANGULAR CROSS SECTION
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where

rbdd

K= T6 i+ d) -

V Equilateral Triangular Section

The maximum torsional shear stress occurs at points A, B, and C

(Figure BS. 2. 2-4) and is determined by

Mt
Tt( max) = "'g;—

where

s, = b%/20.

The total angle of twist is determined by
MtL

¢ max = —eq

where

NG

K= "%

VI Regular Hexagonal Section

The approximate maximum torsional shear stress is determined by
'rt(max) = Mt/st

where

St = 0,217Ad
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and is located at the midpoints of the sides (Fig. B8.2.2-5).. A is the cross-

sectional area and d is the diameter of the inscribed circle.

The approximate total angle of twist is determined by

ML

¢ {max) = ke~

where

K = 0.133Ad? .

VII Regular Octagonal Section

The approximate maximum torsional shear stress is determined by
Tt( max) = Mt/st

where

St = 0, 223Ad

and is located at the midpoints of the sides ( Fig. B8.2.2-6). A is the cross-
sectional area and d is the diameter of the inscribed circle.

The approximate total angle of twist is determined by

MtL
¢ (max) = g

where

K = 0.130Ad? .
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FIGURE BS8.2,2-5 REGULAR HEXAGONAL CROSS SECTION

\\\

FIGURE BS8. 2.2-6 REGULAR OCTAGONAL CROSS SECTION

| <
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VIII Isosceles Trapezoidal Section

| The approximate maximum torsional shear stress and total angle of
twist can be determined for an isosceles trapezoid when the trapezoid is re-
placed by an equivalent rectangle. The equivalent rectangle is obtained by
drawing perpendiculars to the sides of the trapezoid (CB and CD) from the

centroid C and then forming rectangle EFGH using points B and D ( Fig.
BS.2.2-7).

FIGURE BS8.2.2-7 ISOSCELES TRAPEZOIDAL SECTION
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B8.2.3 EXAMPLE PROBLEMS FOR TORSION OF SOLID SECTIONS

I Example Problem 1

Find the maximum torsional shear stress and the total angle of twist

for the solid rectangular cross section shown in Figure BS, 2, 3-1,

Solution: From Table B8.2.2-1, @ = - 0. 256 and B =0.329 for b/d =

2.0. The maximum stress will occur at point A in Figure BS. 2, 3-1.

The torsion section modulus (St) is

5t

= abd?

0.256 (5)(2.5)2

8. 00 in®

The torsional shear stress (7 t) at point A is

Tt

Tt

Mt/ 8,

{
100, 000/8. 00

12,500 psi.

The torsional constant (K) is

K

Bbd?

0.229 (5)(2.5)2

7.156 in% .

The total angle of twist (¢) is

¢

MtL/GK

100, 000 (32)/4, 000, 000 (7. 156)
0.1118 rad.
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II Example Problem 2

Find the maximum torsional shear stress (r t) and the angle of twist (¢)

at point B for the tapered bar shown in Figure B8. 2, 3-2 with a constant dis-
tributed torque. '
Solution:
The radius (r) of the tapered bar as a function of the x-coordinate is:
r = 2.5-0.005x
The internal twisting moment M(x) as a function of the x-coordinate is:
M(x) = mx = 200x .

t

The torsional section modulus (St) of the bar as a function of the

x~coordinate is

St(x) 0.5 7 r°

)

1.5708 [2.5 - 0. 005x]°

The maximum torsional shear stress (1 t) at point B is

t St(x)

200x
1.5708 (2.50 - 0, 005x)°

Forx = L = 300,
X
Ty = 38,197 psi

Since both the internal twisting moment and the torsional stiffness vary

with the x-coordinate, the angle of twist is obtained from
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L |
r -

{ J SECTION A-A
A

b=5.0" M, = 100, 000 in. lb. L = 32"

d = 2. s

G = 4,000,000 psi.

FIGURE B8, 2.3-1

RN NN F‘

1 m; = 200 in. 1b. /in.
5n G = 4,000,000 psi.

»
Rl
w
o
?
s
{4
o

FIGURE B8. 2. 3-2
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L
_ 41 x M(x)
®= G fo K(x) dx .

The torsional stiffness (K) of the bar as a function of the x-coordinate
is

]

K=057rh

il

1.5708 (2.5 - 0.005x)4 .
The angle of twist (¢) in radians between the origin and point B can be
obtained by evaluating the following integral.

¢ = i fBOO 200x
4x108 Jo (2.5 - 0.005x)

dx .

II Example Problem 3

Find the total angle of twist (¢) at points A, B, C, and D for the bar

loaded as shown in Figure B8, 2. 3-3.
Solution:

The internal moments at points A, B, C, and D are:

M (D) = 0
50
m(c)= [ (6,670 Z5=) dx = 15.0 in-Kips
35
35
M (B) = 15,000+ [ 1000 dx = 30.0 in-Kips
20
20
M (A) = 30,000+ [ 3000 -250 dx = 60.0 in-Kips .
0

The equation for angle of twist is

I"x Mt
o= |7 ™
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which is also the area under the Mt/ GK diagram (Fig. B8.2.3-4).

Using the moment-area analogy from beam theory, the following state-

ment can be made.

""The total angle of twist between any two cross sections of a bar which

is loaded with an arbitrary torsional load is equal to the area under the Mt/ GK

diagram between the two cross sections. "
Using the moment-area principle above, the angles of twist are
¢ (A)=0 fixed end.

00
¢ (B) = 30,000(20) + 2/3(30,000) (20)= 2200000 _ 105 rag

GK
1,337,500
¢ (C) = 1,000,000+ 15,000(15) + 1/2 (15,000)(15)=-4“-Eﬁ;§-*

= 0. 13375 rad

1,412,500
¢ (D) = 1,337,500+ 1/3 (15,000) (15) = -‘—Gf(j-— = 0.14125 rad.
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F

2,0 in.kips/in.
1.0 in.kips/in.

aL 20" 15" 15"
A

B C D
2.0 in.?

=~
]

G = 5,000,000 psi.

FIGURE B8.2,3-3

30.0
GK
15.0
GK

204 15 l 15"
=

.

FIGURE B8.2.3-4



